
ACYCLIC COLORINGS OF PLANAR GRAPHS t 

BY 

BRANKO GR~NBAUM 

ABSTRACT 

A coloring of the vertices of a graph by k colors is calle:l acyclic provided 
that no circuit is bichromatic. We prove that every planar graph has an acyclic 
coloring with nine colors, and conjecture that five colors are suN:lent. Other 
results on related types of colorings are also obtained; some of them g~neralo 
ize known facts about "point-arboricity'. 

1. Introduction 

Let G denote a graph with vertex set V; we shall assume th a G contains no 

1- or 2-circuits (that is, loops or multiple edges). A k-coloring of G is a parti t ion 

V = V1 u . . .  u Vk of the vertices of  G into k pairwise disjoint sets (called colors) 
so that adjacent vertices are in different sets (have different colors). A k-coloring 

of  G is called acyclic provided that every subgraph of G spanned by vertices of  

two of  the colors is acyclic (in other words, is a forest). If  G is the graph of  the 

octahedron then the 4-coloring of G indicated in Fig. 1 by the numerals placed near 

the vertices is not acyclic (since the colors 1 and 2 span a graph which is not 

4 

Fig. 1. 
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acyclic); but the 5-coloring of G indicated in Fig. 2 is acyclic. More generally, 

if G is the graph of any bipyramid with four or more sides then five colors are 

necessary for an acyclic coloring of G. 

4 

Fig. 2. 

Our main justification for introducing the notion of acyclic colorings is the 

following 

CONJECTURE 1. Every planar graph has an acyclic 5-coloring. 

The conjecture seems to merit some attention on two counts: 

First, it appears to be rather hard. As a matter of fact, if one fixes any value 

of k there seems to be no obvious proof that every planar graph is acyclically 

k-colorable. By a somewhat involved argument we shall prove (in Theorem 1) 

that every planar graph has acyclic 9-colorings. 

Second, the truth of the conjecture would imply certain results on "point- 

arboricity" due to Chartrand, Kronk and Wall [4], Hedetniemi [12], Chartrand 

and Kronk [3], Stein [23] and Chartrand, Geller and Hedetniemi [1]. Although 

those results do not follow from our Theorem 1, we shall establish (in Theorem 2) 

a weakened version of the conjecture which is sufficient to imply stronger and 

more symmetric variants of those results on "point-arboricity". 

The main result of the present paper is formulated and proved in Section 2. 

Section 3 contains an exposition of the results on "point-arboricity" as welt as 

our Theorem 2 and its proof. Various remarks, problems and conjectures are 

collected in Section 4. 

The author is indebted to S. Hedetniemi, G. Kalai and G. Wegner for 

helpful suggestions. 

2. The main result 

In this section we shall prove: 

THEOREM 1. Every planar #raph G is acyclically 9-colorable, 
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In the proof of  this theorem we dearly may assume, without loss of generality, 

that G has at least six vertices and that G is a maximal planar graph, that is, a 

possibly curvilinear triangulation of the plane (or the 2-sphere). With these assump- 

tions, the steps of the proof may be described as follows: 

(1) After choosing an arbitrary starting vertex Vo of G, we associate with each 

other vertex v~ its distance d(o~) from Vo, which is the least number of edges in a 

path in G connecting Vo and v~. We define a partition of the vertices of G by putting 

Vo = {Vo} and Vj = {v, ~ V]d (v,) = j} for j = 1,2,..., n, where n is the largest of 

the numbers d(vi). 

(2) For each j, 0 ~ j _~ n, we shall form a graph Gj having vertex set V~ and 

determined by a well-defined construction using G. Each Gj will turn out to belong 

to a special type of planar graphs which we call diagonalized polygons. (Thi ~ 

felicitous term was suggested by G. Wegner.) 

(3) Each diagonalized polygon is acyclically 3-colorable. 

(4) We color the vertices of each Vj by three colors by taking acyclic 3-colorings 

of Go, G3, '" ,  G~ (i -= 0 mod 3), ... with one set of three colors, acyclic 3-colorings 

of GI, G4, "" ,G~ (i = 1 mod 3), ... with another three colors, and acyclic 3-colorings 

of G2, Gs" . ,  G~ (i --- 2 mod 3) with a third set of three colors. Thus we obtain a 

9-coloring of G which we then show to be acyclic. 

We turn now to the details. 

Step 1. The partition V = V o U 1 / 1  u . . .  UIT, of the vertex set V o f G  

into disjoint sets Vj is clearly uniquely determined by the choice of the initial 

vertex Vo. It is also clear that if v~ ~ V~ and v~ E Vj are the endpoints of an edge 

of G then either i = j  + 1 or i = j  or i = j -  1. 

Step 2. Go is the graph consisting of the single vertex Vo and having no edges. 

Before defining the other G~, we take an imbedding of G in the 2-sphere S and, 

taking Vo as the north pole of S, we find the stereographic projection G* into a 

plane, tangent at the south pole of S, of the graph obtained from G by omiting 

v0 (and the edges incident with Vo). In order to simplify the notation, we shall 

denote the vertices of G* by the same symbols as the corresponding vertices of 

G. The vertices constituting 1/1 are clearly just those vertices of G' that  are adjacent 

to the unbounded face of G*. We now define inductively graphs G* for 2 < j < n. 

If we have already formed the graph G*_ 1 so that precisely the vertices of the set 

V~_ 1 are the vertices of G~*I adjacent to the unbounded face of G~'_I, then 
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we omit from G*_I the vertices in Vj-1 (and the edges incident with them), 

and call the remaining graph Gj. It is easily verified that V i is precisely the set 

of those vertices of G* that are adjacent to the unbounded face of G~. 

Next, let Cj be the subgraph of G* spanned by the set of vertices V s. Then it is 

seen that C1 consists of a circuit with possibly some of its diagonals, but that C~ 

forj  > 1 may happen to be only 1-connected or even disconnected. (The notation 

and constructions are illustrated in Fig. 3, where n = 3.) Clearly G* = Cn. From 

the graph Cj we obtain a graph C* as follows: 

G~ 

G I 

Fig. 3a. 

For j = n we have C* = Cn. 

For 1 < j < n - 1, C* consists of Cj and, possibly, additional edges between 

vertices in the vertex set Vj of Cj. In order to see what edges, if any, should be 

added to Cj in forming C* we consider, in turn, each of the vertices belonging 

to V~+t in the graph G*. With each vertex w e Vj+ i we have these alternatives: 

(i) w is adjacent to only one vertex in Vj; then w causes no edges to be added. 

(ii) w is adjacent to precisely two vertices vl and v2 of Vj; then we add to Cj 

the edge (vi,v2) unless it is already present in C~. 
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G~ 

Cz 

o 

c; 

O 

o.... o 

G~ 

Fig. 3b. 

o 

G3 -C3-C 3 

G 3 

Fig. 3c. 

(iii) w is adjacent to m vertices of Vj, where m > 3. Let those vertices be vl, 

v2,..., v,,, v,,+ ~ = vl, the notation indicating the clockwise order in which the edges 

(w,vi) follow each other. Then in the formation of Ca*. all the edges (v~,vi+l), 
i = 1,2, ..., m, are added unless they are already present in Cj or have been added 

while considering some other vertex in Vj+~. 

In cases (ii) and (iii) each added edge (vi,vl+l) is supposed to be imbedded in 

the plane suitably close to the arc composed of(vl,w) and (w,v~+ 1). Hence each 

C~ is planar, and all the vertices of C* are adjacent to the unbounded face of C*" 
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We form G~ from C*, for 1 =< j ~ n, by adding, if necessary, edges between 

the vertices of C* in such a manner and number that all the vertices in Vj, the 

vertex set of G j, are adjacent to the unbounded face of G j, and all the other faces 

of Gj are triangles. Thus each Gj is either a single vertex, or an edge, or a simple 

circuit partitioned by diagonals into triangles. In the sequel we shall call such 

graphs "diagonalized polygons". (Some authors call them "maximal outerplanar 

graphs".) 

Step 3. We shall now establish, by induction on the number m of vertices o 

the polygon, that each diagonalized polygon P~ is acyclically 3-colorable. Clearly 

we may assume that m __ 4. As is well known (and easily established either by 

induction or by a direct argument) there exist in Pm at least two 2-valent vertices. 

Let 73 m be a 2-valent vertex of Pro, and let vt and/)m-1be the two vertices of P,, 

adjacent to Vm. Then Pm contains the edge (vt,v m_ 1), and the graph P,,_ 1 obtained 

from Pm by omitting Vm is a diagonalized (m - 1)-gon. By the inductive assumption 

Pro-: may be acyclically 3-colored. Given any acyclic 3-coloring of Pro-1 we 

obtain from it an acyclic 3-coloring of Pro by using the same colors for the vertices 

of P,, different from Vm, and by assigning to Vm the color different from the two 

colors assigned to vl and Vm-1. 

Step 4. We have partitioned the vertex set V of G into subsets Vo, V~,..., V,. Each 

Vj is also the vertex set of a diagonalized polygon Gj. We choose a fixed acyclic 

3-coloring of each Gj, using the same set of three colors for each of the graphs 

Go, G3, G6,...,a set of three different colors for G1, G4 G7,'", and a set of still 

other three colors for G2, Gs, Gs,-..etc. Thus each vertex of G is assigned one 

of the nine colors used.We shall show that this 9-coloring of G is acyclic. Assume, 

on the contrary, that ~ and fl are two of the nine colors and that Vo, v~,..., Vzp = Vo 

form a simple circuit K in which all vertices have one of the colors ~ or ft. Then 

the set W = {Vo,Vl ,...,v2p} of vertices of K cannot be a subset of one of the graphs 

G j, since the coloring of each Gj was acyclic. Thus W meets at least two of the 

sets Vj and since the circuit K is connected, the sets Vj met by W must have con- 

secutive subscripts. But since only two colors ~ and fl are available for the ver- 

tices in W, it follows that W meets precisely two sets Vj, say V, and V,+ 1' Assume, 

for definiteness, that Vo, Vz,". are in V, and have color ~ while vl, v3,." are in 

Vr+ 1 and have color/~. We claim that this is also impossible by the construction 

of G,. Indeed, consider the vertex v 1 ~ V,+l. Since v o and Vz are both adjacent to 

vl but have in the acyclic coloring of G, the same color ~, it follows that in G* 
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the edges (vl, Vo) and (vl, v2) are cyclically separated by some edges (vl, v*) and 

(vl, v**), where v* and v** are in V, and are chosen as close as possible to Vo 

in the cyclic ordering of the edges issuing from vl and having their other vertex 

in V,. Then v* and v** are adjacent to Vo in G, and therefore neither has color 0~; 

since they belong to V,, neither has color fl either. The contradiction we were seeking 

now results on observing that the vertices v*, vl, v** constitute a cut in the graph 

G* which makes it impossible for the path v2, va, "", v2j = Vo which is contained 

in G* and misses vl to be colored only with colors ~ and ft. 

Hence the 9-coloring of G we obtained is acyclic, and the proof of Theorem 1 
is completed. 

3. Partially acyclic colorings 

Let k be a positive integer, and let kl,. . . ,  ks be positive integers such that k = kl 

+ ... + k r  We shall say that a k-coloring of a graph G is a partially acyclic 

k-coloring of type (k~,...,k~) of G, or more succinctly, a (kD...,k~)-coloring 

of G, if the k colors may be partitioned into sets of kl, k2, ...,ks colors such that 

any pair of colors taken from the same set span an acyclic subgraph of G.Thus an 

acyclic k-coloring is a (k)-coloring, and a k-coloring in the usual sense could also 

be termed a (1,1,...,1)-coloring. 

It was proved in [2], [3J, [4] and [12] that the vertices of each planar graph G 

may be partitioned into three sets such that the subgraph of G spanned by each 

of the sets is acyclic. (In their terminology this result reads: "The point-arboricity 

of each planar graph is at most 3".) Since each acyclic graph (i.e., each forest) 

is acyclically 2-colorable, and since each acyclically 2-colorable set is a forest, the 

result just mentioned may be formulated as: 

PROPOSITION 1. Every planar graph has a (2, 2, 2)-coloring. 

This result was strengthened by Stein [23]; he showed that one of the three 

forests into which each planar graph is decomposable by Proposition 1 may be 

assumed to consist of isolated vertices. Thus Stein's result may be rendered as: 

PROPOSITION 2. Every planar graph has a (2, 2, 1)-coloring. 

We shall strengthen this still further by proving: 

THEOREM 2. Everyplanar graph G has a (2,3)-coloring. 

PROOF. We shall again assume, without loss of generality, that G has at least 
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six vertices and that it is a triangulation of the plane. We shall prove, by induction 

on the number of vertices, the stronger assertion: 

(*) Every triangulation G of the plane has a (2,3)-coloring; moreover, the 

three colors to be assigned to the vertices of one arbitrary triangle may be 

prescribed in advance. 

In the sequel, the triangle with prescribed coloring will be called the distinguished 

triangle. 

The proof of (*) will be carried out in several steps. We shall first consider the 

case in which G is not 4-connected; next we shall treat the case in which G has 

a 4-valent vertex not incident with the distinguished triangle. Then we shall 

consider the case in which G is 4-connected and all its vertices have valence at 

least five; we shall show how to carry out the proof in case G contains either a 

(5, 5)-edge (that is, an edge both endpoints of which have valence 5), or a (5, 6)- 

edge (that is, an edge one endpoint of which has valence 5, the other valence 6), 

provided that the edge in question has no vertex in the distinguished triangle 

and none that belongs to a proper 4-cut of G. (A proper k-cut of G is a circuit of 

G of length k such that both components of its complement contain vertices of 

G.) Finally we shall show that one of these cases must occur. 

Step 1. i f  G is not 4-connected, then G contains a proper 3-cut C. Let G* 

and G** be the two components into which C separates G, and let us assume that 

G** contains the distinguished triangle. By the inductive assumption, G** has 

a (2,3)-coloring with the required properties; also by the inductive assumption, 

G* has a (2,3)-coloring that assigns to the vertices of C the same colors they 

obtained in the (2,3)-coloring of G**. It is now immediate that the 5-coloring of 

G determined by the (2,3)-colorings of G* and G** is indeed the required (2,3)- 

coloring of G. 

Step 2. Let v be a 4-valent vertex of G that does not belong to the distinguished 

triangle. We construct a graph G* by deleting v from G and introducing an edge 

between two of the diagonally opposite vertices that were adjacent to v (see 

Fig. 4). Since G may be assumed to be 4-connected, either of the two possible 

choices is permissible. The way of obtaining a (2,3)-coloring of G from any (2,3)- 

coloring of G* is described in Table 1 for all cases except the first one. In Table 1 

(as well as in the other tables) colors ~ and fl form the set of two and 7, 6 and 

the set of three colors. Each row of the table indicates a possible coloring; the 
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p- 

S ~ 

Fig. 4. 

~ s  

entries under p, q, r, s indicate all the possibilities (up to permutations) for G*, 

the entries under v a suitable choice for G. 

TABLE 1 

p q r S v 

a 7 /~ 7 see text 

a /~ r 6 e 
a 6 ~ 6 # 
a 6 r e fl 

7 a 6 a e 
7 a 6 # e 
~, a 6 e p 
r e 6 e p 

In the case described in the first row of Table 1 we consider the maximal connected 

subgraph H of G* containing only vertices colored ~ and fl, and containing the 

vertices p and r. Clearly H is a tree that contains the edge pr. To obtain the required 

coloring of G we assign v the color fl and interchange the colors ~ and/3 in that 

subtree of H that contains r and is obtained from H by deleting the edge pr. 

S tep  3. We now assume that G is 4-connected and that it contains an edge 

vw having one vertex of valence 5 and the other of valence 5 or 6, such that vw 

does not meet the distinguished triangle and such that (see Figs. 5 and 6) the 

vertices p and p' in the first case, and q, q' and r, r ' in the second have no common 

neighbor outside the subgraph shown. By omitting the vertices v and w, and 

identifying p with p',  respectively q with q' and r with r', we obtain from G a 

graph G* which is (2,3)-colorable by the inductive hypothesis. To obtain a (2,3)- 

coloring of G from a given (2,3)-coloring of G* we use Tables 2 and 3, and assigu 

to vertices with primed labels the colors of the vertices with corresponding 



Vol. 14, 1973 ACYCLIC COLORINGS 
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P v 

G 

,p' 

qo br 
G* 

Fig.  5. 

P 

q ~ q '  

r S ~ t  r* 

G 

~r 

,/\, 
G* 

Fig. 6. 

399 

unprimed labels. In order to shorten the tables we have used the letters a and b to 

indicate either of ~ and B, and e, d, e to indicate arbitrary colors from among 

?, 6, e, different latin characters designating different colors, and we used the symbol 

to indicate an arbitrary color. All the choices of  colors are understood to be 

made in accordance with the rule that adjacent vertices have different colors. 

Then for each possible (up to permutation) coloring of the graphs G* of Figs. 

5 and 6 we indicate in Tables 2 and 3 a suitable coloring of G. 

TABLE 2. 

p q r s t v w 

y O ~ c d a p 

X 6 e a ~ c a 
7 a 6 c a b e 

7' a ~ a c b d 
y a p a b J 8 
a fl 7 fl c d e 

a .8 7 c fl d e 
a p 7 c d p 6 

a 7 J C d fl e 
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TABLE 3. 

p q r s t v w 

# a 7 J fl c 
c d a fl 7 J fl 

a fl a ~ 7 t Y 
a B 7 a B J 
a y ~ a fl 7 /~ 
7 ~f~ c a ,8 d ,8 

a 7 J a c fl 
c a y a J e fl 
y J c a d p a 
c ~ 7 J e a b 
e d a 7 J e ~8 

Step 4. In this, the last part of the proof of assertion (*), we have to show 

that one of the cases discussed in the previous steps takes place for every graph G. 

We first establish the following general result, in which ej,k denotes the number 

of edges of G having one vertex of valence j and the other of  valence k. 

(**) I f  G is a triangulation of the plane and if  each vertex of  G has valence 

at least 5, then either e5,5 > 0 or else e5. 6 __> 60. 

In order to prove (**), let Vk denote the number of k-valent vertices of G. If  

es,5 = 0, consider the 5vs edges incident with vertices of valence 5. Counting 

from the other endpoints of those edges and observing that two adjacent neighbors 

of a vertex of valence 6 or more may not both have valence 5, we have 

5V 5 ~_ es,6 + 3v7 + 4V 8 + 4v9 + 5 r i o  + . . . .  

On the other hand, from Euler's relation we have 

v s =  1 2 +  ]~ ( k - 6 )  vk, 
k~7 

so that 

60 + E (5k - 30 - [k/2]) vk < es,6, 
k_>_7 

and in view of the non-negativity of the sum, 60 < es,6, as claimed. 

Returning to the proof of  assertion(*), in view of Step 1 we may assume that G 

is a 4-connected triangulation of the plane. If  G contains a 4-valent vertex that 

is not incident with the distinguished triangle, we have the situation considered 

in Step 2. I f  all 4-valent vertices of G are incident with the distinguished triangle, 
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there is a proper 4-cut Q that encloses the distinguished triangle.Among all such 4- 

cuts let Qo enclose the maximal possible number of faces of G.Then from each vertex 

of Qo, at least two edges lead into the "outer"  component of G. Therefore, if H 

denotes the graph obtained from G by deleting all the vertices that are inside Qo 

and replacing the inside of Qo by a copy of the part of G that is outside Qo, then H 

is a triangulation with minimal valence 5, and all the vertices of Qo have valence 

at least 6 in H. By (**) there are in H either some (5,5)-edges or some (5,6)-edges; 

in either case there is in G an edge of the type required for Step 3. 

We still have to deal with the case in which G is 4-connected but has no 

vertex of valence 4. If G has no proper 4-cuts, consider the graph H* obtained 

by taking two copies of G and identifying the boundaries of the two distinguished 

triangles. Then the identified vertices have valences at least 8, and thus (5,5)- 

edges and (5,6)-edges of H* correspond to edges of the same type in G that 

miss the distinguished triangle; thus we again may apply Step 3. 

Finally, if G has a proper 4-cut Q we may assume that the distinguished triangle 

is inside Q; then we proceed, as above, to a maximal proper 4-cut Qo, and are 

therefore again led to a situation in which Step 3 may be performed. 

Thus one of the Steps 1, 2, 3 applies in each case and the proof of assertion (*), 

and of Theorem 2, is completed. 

4. Remarks 

(1) The concepts of acyclic and partially acyclic colorings lead to many open 

problems besides Conjecture 1. We already mentioned that forests coincide with 

the acyclically 2-colorable graphs. Clearly, each 2-coloring of a forest is also an 

acyclic coloring. Analogously, if P is a diagonalized polygon then, as we have 

seen in the proof of Theorem 1, P is acyclically 3-colorable; however, the same 

argument actually shows that every 3-coloring of P is an acyclic 3-coloring. More 

generally, if G is a graph that may be imbedded in the plane in such a manner that 

all its vertices are adjacent to the unbounded face, then G may be seen to be 

acyclically 3-colorable (but not every 3-coloring of such a graph needs to be 

aeyclic); this is an obvious strengthening of "the (3,2)-theorem" of [2]:  

"The point-arboricity of an outerplanar graph does not exceed 2". It would 

be of some interest to characterize those graphs for which every 3-coloring is 

acyclic. 

As observed by G. Wegner (private communication), if G is a 3-colorable planar 
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graph in which every simple circuit of even length has a diagonal, then every 

3-coloring of G is acyclic. However, the unique 3-coloring of the graph G in Fig. 7 

is acyclic although G contains a quadrangle without diagonals. This example 

(from a private communication by G. Wegner) refutes a conjecture made in earlier 

versions of this paper concerning the characterization of graphs having only 

acyclic 3-colorings. 

Fig. 7. 

(2) There exist planar graphs G that are not (2,2)-colorable. Indeed, as observed 

by Stein [-23] (correcting an erroneous assertion in [3]), ifG is a triangulation of 

the plane then G is not (2,2)-colorable if and only if its dual G* has no Hamiltonian 

circuit. The smallest known such graphs have 21 vertices (see Fig. 8 for one of 

them); their duals were independently discovered by D.W. Barnette (see [9]), 

Bos~k [-1] and Lederberg [17] (see [,11] for more details concerning those graphs). 

The fact that the dual G* of a 3-connected planar graph G has no Hamiltonian 

circuit does not imply that G is not (2,2)-colorable. For example, the graph in 

Fig. 8. A graph that is not (2, 2)-colorable. 
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Fig. 9 is (2.2)-colorable (~ and fl indicate one set of two colors, V and e the other) 

although its dual is easily seen not to have a Hamiltonian circuit. 

Fig. 9. 

u o" 6 ' 

A (2, 2)-colorable graph the dual of which has no Hamiltonian circuit. 

(3) There exist planar graphs that are not (1,3)-colorable. The graph in Fig. 10 

(with 14 vertices) may be verified to have that property; it is the smallest known 

planar graph which is not (1,3)-colorable. 

Fig. 10. A graph with no (1, 3)-coloring. 

(4) The implication-diagrams in Fig. 11 indicate some of the open problems 

concerning acyclic and partially acyclic colorings. The type of coloring near the 
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(4)- 

(2,2)- (I,3)- 

(1,1,2)? - 

I 
(t,1,1,t)? ~ 

Israel J. Math. ,  

{5)? ',- 
J 

(2,3)I- (1,4)? i- 

(I~2,2)+ . .~ I , I ,3 )+  

(I,I,I,2)+ 
I 

(I,I,I,1,I)§ 

Fig. 11. 

higher end of a slanted segment indicates a stronger assertion than the one near 

the lower end. The symbol + ( o r - )  indicates that every (not every) planar 

graph has a coloring of that type. The symbols ? + and ? - indicate open problems, 

and our conjecture to their solution. 

(5) Another open problem is the characterization of those planar graphs which 

have a (1,3)-coloring, of those that are (2,2)-colorable, and of those that may 

be acyclJcally 4-colored. 

(6) By a slight refinement of the argument used in the proof of assertion (**) 

in Section 3 it may b~ shown that for each triangulation of the plane with all 

vertices of valence at least 5 we have 2es,s +e5,6 ~ 60. Similarly, one can show 

that for each triangulation of the plane either e l . k > O  for some j and k such that 

j + k  =< 12, or else ea j  o >__ 12. The method we used in Section 3 to prove (**), 

which may also be made to yield the facts just mentioned, is due to Kotzig [13]. 

Kotzig used it to establish that every 3-connected planar graph G satisfies ej, k > 0  

for some j and k with j + k =< 13, and that this happens even for some j, k with 

j + k _-< 11 provided that all vertices of G have valence at least 5. It is rather 

curious that although the relation es,5 + es.6 > 0 for triangulations with minimal 

valence 5 was established already in 1904 by Wernicke [24] and strengthened 

by Franklin E6] in 1922, Lebesgue [16] in 1940 and others, assertion (**) and 

Kotzig's results appear in none of those papers. It is also somewhat remarkable 
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that although assertion (**) may easily be established by the method of "Euler 

contributions" (see, for example, 1-21, Section 4.3]), Kotzig's result does not seem 

to be obtainable in that way. 

(7) The definitions of acyclic k-coloring and partially acyclic colorings are 

meaningful also for graphs which are not necessarily planar. As an example of 

results possible in this direction we mention: 

l f  G is a graph with maximal valence 3 then G has an acyclic 4-coloring. 

The graph of the cube is an example of a 3-valent, 3-connected, planar, 2-color- 

able graph which is not acyclically 3-colorable. 

While it is easy to obtain some bounds (quadratic in n) for the least number a(n) 

of colors needed for acyclic colorings of all graphs with maximal valence n, it 

would be of interest to determine the exact values of a(n). As mentioned above, 

a(3) = 4. It is not hard to show that a(4) < 6, but this is probably not a best 

possible result. Indeed, we may make the following 

CONJECTURE 2. a(n) = n + 1 for all n > 2. 

If true, this conjecture would imply the easily established observation of 

Motzkin [20] that the maximal possible "point arboricity" of graphs of maximal 

valence n does not exceed In/2] + 1. 

(8) Let fr (m) denote the class of all graphs that possess no circuits of length m 

or less (in other words, have girth at least m + 1). Scott Niven raised the question 

what can be said about (m)-acyclic colorings of the members of f9 (m), where a 

k-coloring of a graph G is called (m)-acyclic if for every choice of m of the colors, 

the subgraph of G spanned by vertices of those colors is acyclic. While bounds 

am(n) analogous to the a(n) discussed above clearly exist for the number of colors 

needed for (m)-acyclic coloring of all members of if(m) having maximal valence n, 

no reasonable estimate for am(n) is known. Without restrictions on the valence no 

bounds are possible, since it is a well known result of Erd6s [5] that each fg(m) 

contains graphs of arbitrarily large chromatic number. (See [10] for references 

to the literature on this topic and some related results.) 

(9) Let ~(m) denote the family of all planar graphs in fg(m). The theorem of 

Gr6tzsch [7] (for more accessible proofs see [8], [21], and [22]) asserts that all 

graphs in ~(3)  are 3-colorable, while (as mentioned above) the graph of the cube 

shows that not all graphs in @ (3) are acyclically 3-colorable. 

CONJECTURE 3. All planar graphs without 3-circuits are acyclically 4-color- 

able. 
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It would also be of interest to determine whether all graphs in # (4) are acyclically 

3-colorable. 

(10) As shown by the complete graphs (which are the graphs of cyclic or 

neighborly 4-polytopes), there exists no analogue of Theorem 1 for 4-polytopal 

graphs since even their chromatic numbers have no finite bounds. However, 

denoting by k(d) the least upper bound of the chromatic numbers of d-polytopal 

graphs in if(3), we venture: 

CONJECTURE 4. k(d) < oo for all d. 

CONJECTURE 5. sup {k(d) I d > 3} = oo. 

If Conjecture 4 is true for d = 4, it would make sense to inquire about the exis- 

tence of a k such that each 4-polytopal graph in fr is acyclically k-colorable. 

Similar questions may obviously be asked for other values of d. 

Problems analogous to the above may also be raised about d-polytopal graphs 

in f# (4). 

(11) Theorem 1 may probably be modified to hold for all graphs imbeddable 

into a given 2-manifold, but the details have not been worked out. Kronk 

[14[ established, in analogy to Proposition 1, that every graph G imbeddable 

n a closed orientable 2-manifold of genus g > 0 has a (2,2,..., 2)-coloring, 

whzre the number of 2's is [(�88 + x/1 +48g)]. (For generalizations see [18] 

and [19"[.) The analogues of our Theorem 2 for graphs imbeddable in 2-manifolds 

of higher genus remain to be explored. 

Also open are the questions concerning bounds for the chromatic number of 

graphs in (r that are imbeddable in various 2-manifolds, and of the possibilities 

of their acyclic coloring. The only results known in this direction (see [15]) deal 

with the extension of Grtitzsch's theorem to graphs imbeddable in the torus. 

(12) The idea of looking for k-colorings of graphs such that the subgraphs 

spanned by any two (or any r, or certain pairs of) colors have some desired prop- 

erties can be exploited in countless directions. We shall not belabor the obvious, 

but would like to point to three open problems. 

(i) What is the smallest k such that each planar graph has a k-coloring in 

which each bicolored path involves at most three vertices ? 

The existence of such a k may be easily deduced from Theorem 1, together with 

the estimate k < 2304 = 9" 28. 

In the formulation of the last two questions we shall say that a graph G imbedded 
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in the plane is accessible provided some face of the imbedding is incident with 

all the vertices of  G. (Such graphs are sometimes called "outerp lane" . )  

(ii) What  is the least integer k such that  every planar graph G allows a k- 

coloring in which the subgraph spanned by any pair of  colors is accessible? 

Our Theorem 1 establishes that  k < 9. On the other hand, it is not hard to 

find examples that  show k > 5. We conjecture k = 5. 

(iii) Does there exist a k such that every planar graph G is acyclically k-colorable 

and the vertices of  each triplet of  colors span an accessible subgraph of G? 
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